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Abstract

Tenderness has been repeatedly reported as the most important quality aspect of meat. However, a number of studies have shown that
a significant portion of retail meat can be considered tough. As a consequence, a significant consumer segment is willing to pay a pre-
mium for guaranteed tender meat. However, apart from measuring the shear force, there is no reliable method to predict tenderness.
Most of the branded meat programs therefore attempt to ensure eating quality by controlling some of the factors that affect tenderness.

Meat tenderness is determined by the amount and solubility of connective tissue, sarcomere shortening during rigor development, and
postmortem proteolysis of myofibrillar and myofibrillar-associated proteins. Given the effect of postmortem proteolysis on the muscle
ultrastructure, titin and desmin are likely key substrates that determine meat tenderness.

A large number of studies have shown that the calpain proteolytic system plays a central role in postmortem proteolysis and tender-
ization. In skeletal muscle, the calpain system consists of at least three proteases, l-calpain, m-calpain and calpain 3, and an inhibitor of
l- and m-calpain, calpastatin. When activated by calcium, the calpains not only degrade subtrates, but also autolyze, leading to loss of
activity. m-Calpain does not autolyze in postmortem muscle and is therefore not involved in postmortem tenderization. Results from a
number of studies, including a study on calpain 3 knockout mice, have shown that calpain 3 is also not involved in postmortem prote-
olysis. However, a large number of studies, including a study on l-calpain knockout mice, have shown that l-calpain is largely, if not
solely, responsible for postmortem tenderization. Research efforts in this area should, therefore, focus on elucidation of regulation of l-
calpain activity in postmortem muscle. Discovering the mechanisms of l-calpain activity regulation and methods to promote l-calpain
activity should have a dramatic effect on the ability of researchers to develop reliable methods to predict meat tenderness and on the meat
industry to produce a consistently tender product.
Published by Elsevier Ltd.
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1. Introduction

Multiple factors, including palatability, water-holding
capacity, color, nutritional value and safety, determine
meat quality. The importance of these traits varies depend-
ing on both the end product and the consumer profile. Fla-
vor, juiciness and tenderness influence the palatability of
meat. Among these traits, tenderness is ranked as most
important (Miller, Carr, Ramsey, Crockett, & Hoover,
0309-1740/$ - see front matter. Published by Elsevier Ltd.
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2001). An example of the importance of tenderness over
flavor or juiciness is the tenderloin (psoas major). Although
this cut is one of the least flavorful and least juicy cuts of
meat, it is the most highly valued retail cut due to its
supreme tenderness (Savell & Shackelford, 1992). Further,
it has been shown that consumers can distinguish between
tough and tender meat (Huffman et al., 1996) and that they
are willing to pay a premium for guaranteed tender meat
(Boleman et al., 1997; Lusk, Fox, Schroeder, Mintert, &
Koohmaraie, 2001; Shackelford et al., 2001).

The objective of this review paper is to discuss (1) the
importance and value of meat tenderness, (2) the effect of
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postmortem storage on muscle structure and tenderness,
and (3) the role of the calpain proteolytic system in post-
mortem tenderization.

2. The importance and value of meat tenderness

Tenderness has been repeatedly reported as the most
important quality attribute of meat (Huffman et al., 1996;
Miller et al., 2001). However, surveys of beef packers, pur-
veyors, restaurateurs and retailers indicate that tenderness
is among the highest ranked quality concerns (Smith
et al., 1995). This concern is warranted because a number
of studies have shown that a significant proportion of retail
meat cuts can be considered tough. In a large beef tender-
ness survey in 14 cities in the United States it was found
that 10.7–61.8% of samples, depending on the retail cut,
had a 68% chance of receiving panel tenderness scores of
‘‘slightly tough’’ or worse (Morgan et al., 1991). In a sim-
ilar study it was found that 24% of US retail beef loin
steaks were rated lower than ‘‘slightly tender’’ (George,
Tatum, Belk, & Smith, 1999). Results from a large study
in New Zealand indicated that toughness problems are
not limited to beef (Bickerstaffe, Bekhit, Robertson, Rob-
erts, & Geesink, 2001). For retail beef, lamb and pork mid-
loin cuts 9.8%, 3.8% and 10.7%, respectively, could be
classified as ‘‘tough’’ or ‘‘very tough’’ (Bickerstaffe et al.,
2001).

Traditional carcass grading systems are not effective at
identifying meat tenderness variation. For instance, the
US grading system uses marbling as a measure of quality.
However, marbling explains at most 5% of the variation
in beef tenderness (Wheeler, Cundiff, & Koch, 1994). A
grading system aimed at meat quality was developed by
Meat Standards Australia (Polkinghorne et al., 1999).
Based on critical control points for tenderness, juiciness,
flavor and overall satisfaction, from production to process-
ing and consumption, different cuts are graded ‘‘unsatisfac-
tory’’ (no grade), ‘‘good everyday’’ (3 star), ‘‘better than
everyday’’ (4 star) or ‘‘premium quality’’ (5 star). However,
although this system works to reduce the probability that
steaks are of unsatisfactory quality, 71% of striploins of
‘‘no grade’’ carcasses were judged acceptable by consum-
ers, whereas 11% of striploins of graded carcasses were
deemed unacceptable (Thompson, Polkinghorne, Watson,
Gee, & Murrison, 1999).

A large amount of effort has been devoted to the devel-
opment of systems to classify carcasses according to ten-
derness. These include visible and near-infrared
spectroscopy (Byrne, Downey, Troy, & Buckley, 1998;
Park, Chen, Hruschka, Shackelford, & Koohmaraie,
1998; Shackelford, Wheeler, & Koohmaraie, 2004, 2005),
image texture analysis (Li & Shatadal, 2001), image analy-
sis using BeefCam (Belk et al., 2000; Vote, Belk, Tatum,
Scanga, & Smith, 2003), a combination of colorimeter,
marbling and hump height traits (Wulf & Page, 2000) or
measurement of longissimus slice shear force (Shackelford,
Wheeler, & Koohmaraie, 1999). A direct comparison
between the latter three methods indicated that only slice
shear force accurately identified tender beef (Wheeler
et al., 2002). Furthermore, accurately segregating carcasses
based on longissimus tenderness also sorts other muscles
for tenderness (Wheeler, Shackelford, & Koohmaraie,
2000a; Wheeler et al., 2002). However, it appears that the
industry is reluctant to implement slice shear force mea-
surement because it is perceived as too costly (Wheeler
et al., 2002).

The costs of automated classification using slice shear
force were estimated at $4.35 per carcass (Wheeler, Shac-
kelford, & Koohmaraie, 1999). The premium consumers
are willing to pay should outweigh these costs. Boleman
et al. (1997) reported that 94.6% of families (n = 42) chose
steaks that were tender over intermediate and tough steaks,
even though a $1.10/kg price difference was placed between
each category. Shackelford et al. (2001) reported that 50%
of consumers (n = 1,036) were willing to pay $1.10/kg pre-
mium for the assurance of tenderness with the Tender
Select concept. Lusk et al. (2001) found that 51% of partic-
ipants (n = 86) in a survey were willing to pay an average
premium of $4.05/kg for guaranteed tender beef. Recently,
Feldkamp, Schroeder, and Lusk (2005) conducted a con-
sumer evaluation study where participants were given a
generic 12-oz. steak and asked to place bids to exchange
it for a ‘‘guaranteed tender’’ steak. Consumers were willing
to pay a $2.79/kg premium for ‘‘guaranteed tender’’ steak.
From these numbers it appears that the benefits of a guar-
anteed tender beef concept may outweigh the costs. How-
ever, as mentioned by Shackelford et al. (2001), a number
of factors need to be considered by retailers before imple-
menting a guaranteed tender concept. These factors are:
(1) how large does the premium for this product have to
be to offset the costs of identifying, branding, and market-
ing the product line; (2) is there a sufficiently large enough
market at the aforementioned premium price; (3) will sales
of this branded product increase or decrease the sales of
other higher-profit items; and (4) will there be a steady sup-
ply of the product line. From the studies mentioned above
it appears that additional research is needed to determine
the benefits and costs of a tenderness-certified program.

Approaches using spectroscopy, although not as accu-
rate as slice shear force, are accurate enough to be useful
to the industry and should be available commercially in
the near future. Implementation of non-invasive
approaches such as those using spectroscopy will be much
less costly than slice shear force and should make it easier
to develop a profitable marketing strategy for products
with more consistent and/or superior tenderness.

3. Growth of branded products and guaranteed tenderness

products

Because of the importance of eating quality to consumer
satisfaction, there has been an explosion of branded meat
products in the United States and probably worldwide.
The first branded beef program in the United States was
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Certified Angus Beef (CAB) which was introduced in the
late 1970s. To date, CAB is a very successful beef promo-
tion program. It is interesting to note that CAB does not
include processes that are known to affect beef tenderness
(e.g., 14 days’ postmortem storage specification). Most of
the branded beef programs that were introduced in the
1990s and 2000s attempt to ensure eating quality by con-
trolling some of the factors that are known to affect beef
tenderness (e.g., length of postmortem storage, electrical
stimulation, tender-stretch, breed of cattle, etc.). We know
of only one branded beef program in the United States that
is based on actual measurement of tenderness. This level of
interest by the industry to provide a highly acceptable
product to consumers gives the researcher a unique oppor-
tunity to develop useful technology for the industry with a
very high likelihood of implementation.

4. The effect of postmortem storage on tenderness

The three factors that determine meat tenderness are
background toughness, the toughening phase and the ten-
derization phase. While the toughening and tenderization
phases take place during the postmortem storage period,
background toughness exists at the time of slaughter and
does not change during the storage period. The effect of
postmortem storage on tenderness is illustrated in Fig. 1.

The background toughness of meat is defined as ‘‘the
resistance to shearing of the unshortened muscle’’ (Marsh
& Leet, 1966), and variation in the background toughness
is due to the connective tissue component of muscle. In
particular, the organization of the perimysium appears to
affect the background toughness, since a general correla-
tion between the perimysium and the tenderness of muscles
has been found for both chicken and beef (Strandine,
Koonz, & Ramsbottom, 1949).

The toughening phase is caused by sarcomere shortening
during rigor development (Koohmaraie, Doumit, &
Wheeler, 1996; Wheeler & Koohmaraie, 1994). For beef,
this process usually occurs within the first 24 h postmortem
(Wheeler & Koohmaraie, 1999). The relationship between
Fig. 1. Tenderness of ovine longissimus, measured by Warner–Bratzler
shear force, at various times postmortem. Means without a common
superscript differ (P < 0.05; from Wheeler and Koohmaraie, 1994).
sarcomere shortening and meat toughness was first
reported by Locker (1960). Later it was shown that there
is a strong negative relationship between sarcomere length
and meat toughness when sarcomeres are shorter than
2 lm, and that the relationship is poorer at longer sarco-
mere lengths (Bouton, Harris, Shorthose, & Baxter, 1973;
Herring, Cassens, Suess, Brungardt, & Briskey, 1967;
Wheeler, Shackelford, & Koohmaraie, 2000b).

While the toughening phase is similar in all carcasses
under similar processing conditions, the tenderization
phase is highly variable. There is a large variation in both
the rate and extent of postmortem tenderization of meat,
and this results in the inconsistency of meat tenderness
found at the consumer level. It has been known for a long
time that meat tenderness improves during cooler storage,
and it was suggested almost a century ago that this is due to
enzymatic activity (Hoagland, McBryde, & Powick, 1917).
It is now well established that postmortem proteolysis of
myofibrillar and myofibrillar-associated proteins is respon-
sible for this process.

5. The effect of postmortem storage on muscle ultrastructure

A variety of studies have shown that weakening of the
myofibers is the key event in tenderization. The most con-
sistently reported ultrastructural change associated with
tenderization is breaks at the junction of the I band and
Z-disk (Abbot, Pearson, Price, & Hooper, 1977; Davey &
Dickson, 1970; Dutson, Pearson, & Merkel, 1974; Ho,
Stromer, Rouse, & Robson, 1996; Taylor, Geesink,
Thompson, Koohmaraie, & Goll, 1995a). Because of the
weakening of the myofibers, aged meat yields a higher pro-
portion of smaller fragments upon homogenization than
unaged meat. The myofibril fragmentation index (MFI),
which is based on the fragmentation concept, has been used
as an index for meat tenderness, as well as for postmortem
tenderization (Davey & Gilbert, 1969). Since then the MFI
has been shown to be a predictor of meat tenderness in
numerous studies (Olson, Parrish, Dayton, & Goll, 1977;
Taylor et al., 1995a; Whipple, Koohmaraie, Dikeman, &
Crouse, 1990a).

The proteins that are degraded during myofiber degra-
dation are myofibrillar and cytoskeletal proteins, which
include troponin-I, troponin-T, desmin, vinculin, meta-vin-
culin, dystrophin, nebulin and titin (see Robson et al., 1997
& Taylor et al., 1995a, for reviews). Three major cytoskel-
etal structures are degraded when meat is tender: Z- to Z-
line attachments by intermediate filaments, Z- and M-line
attachments to the sarcolemma by costameric proteins
and the elastic filament protein titin (Taylor et al.,
1995a). Z- to Z-line attachments are mostly composed of
desmin. The importance of these attachments for meat ten-
derness is illustrated by the model of callipyge sheep, which
show little postmortem tenderization (Koohmaraie, Shac-
kelford, Wheeler, Lonergan, & Doumit, 1995). For several
weeks postmortem little degradation of desmin occurs
(Geesink & Koohmaraie, 1999b; Koohmaraie et al.,
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1995), and the Z- to Z-line attachments remain largely
intact (Fig. 2; Taylor & Koohmaraie, 1998). Similarly, titin
also remains largely intact for several weeks postmortem in
muscles from callipyge sheep (Geesink & Koohmaraie,
1999b). Detachment of the Z- and M-lines from the sarco-
lemma is probably not a limiting factor for tenderization.
The detachment of these structures at 14 days postmortem
was almost complete in both callipyge and control sheep,
whereas a large difference in tenderness was observed (Tay-
lor & Koohmaraie, 1998). Thus, titin and desmin are likely
key substrates that determine meat tenderness.

6. What characteristics should a protease have to be

considered as a candidate for causing postmortem
tenderization?

Three proteolytic systems present in muscle have been
investigated for their possible role in postmortem proteol-
ysis and tenderization: the calpain system, the lysosomal
cathepsins and the multicatalytic proteinase complex
(MCP). In addition to being endogenous in skeletal muscle,
these proteolytic systems must fulfill two other require-
ments to consider them involved in postmortem proteolysis
in meat (Goll et al., 1983; Koohmaraie, 1988). First, the
proteases must have access to the substrates, and secondly,
they must be able to reproduce the proteolysis pattern
observed after postmortem storage of meat. Incubation
of myofibrillar proteins with cathepsins results in different
degradation patterns than those that occur during post-
mortem storage of muscle, and it is doubtful that cathep-
Fig. 2. Electron micrograph of myofibrils at 14 days after death. (A) and (B)
(v), and loss of Z-line alignment. (C) and (D) show callipyge longissimus withou
sins are released from the lysosomes in postmortem
muscle (Koohmaraie, 1988). A significant role for MCP
can be excluded, since myofibrils are very poor substrates
for this protease system (Koohmaraie, 1992). Moreover,
the degradation pattern of myofibrillar proteins by MCP
does not mimic the degradation pattern observed in post-
mortem muscle (Taylor et al., 1995b). This leaves the cal-
pain system or potentially another, not yet investigated,
proteolytic system responsible for postmortem proteolysis
of key myofibrillar proteins and the resultant meat
tenderization.

7. l-Calpain is largely, if not solely, responsible for

postmortem tenderization

Calpains are calcium-activated proteases with an opti-
mum activity at neutral pH. In skeletal muscle, the calpain
system consists of at least three proteases, l-calpain, m-cal-
pain and skeletal muscle-specific calpain, p94 or calpain 3,
and an inhibitor of l- and m-calpain, calpastatin. Over the
last decade multiple calpain-like genes have been identified,
however little is known about the proteins encoded by
these genes (Goll, Thompson, Li, Wei, & Cong, 2003).

Both l- and m-calpain are composed of two subunits
with molecular weights of 28 and 80 kDa (Dayton, Goll,
Zeece, Robson, & Reville, 1976; Dayton, Reville, Goll, &
Stromer, 1976; Dayton, Schollmeyer, Lepley, & Cortés,
1981; Emori, Kawasaki, Imajoh, Kawashima, & Suzuki,
1986). An important characteristic of l- and m-calpain is
that they undergo autolysis in the presence of calcium.
show postmortem changes in normal lamb longissimus with I-band breaks
t I-band breaks. Bars represent 1 lm (from Taylor and Koohmaraie, 1998).
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Autolysis reduces the Ca2+-requirement for half maximal
activity of l- and m-calpain (Dayton, 1982; Nagainis,
Sathe, Goll, & Edmunds, 1983; Suzuki et al., 1981; Suzuki,
Tsuji, Kubota, Kimura, & Imahori, 1981). Initial autolysis
of the large subunit of l-calpain produces a 78-kDa frag-
ment followed by a 76-kDa fragment (Inomata, Kasai,
Nakamura, & Kawashima, 1988). Initial autolysis of the
large subunit of m-calpain produces a 78-kDa fragment
only (Brown & Crawford, 1993). Further autolysis of l-
and m-calpain leads to lower molecular weight fragments
of the large subunit and loss of activity.

Calpain 3 is a single polypeptide of 94 kDa with
sequence homology to the large subunits of l- and m-cal-
pain (Sorimachi, Ishiura, & Suzuki, 1989). Purification
and characterization of calpain 3 has been extremely diffi-
cult for several reasons. Unlike l- and m-calpain, calpain
3 can not be easily extracted from skeletal muscle due to
its association with the myofibrillar protein, titin (Sori-
machi et al., 1995). Expression of p94 in vitro is hampered
by rapid autolysis of the enzyme at physiological levels of
calcium, and furthermore, the autolysis is not affected by
calpain inhibitors (Sorimachi et al., 1993).

Calpastatin is the endogenous specific inhibitor of l-
and m-calpain (Maki et al., 1988). Several isoforms of this
protein exist, but the predominant form in skeletal muscle
contains four calpain-inhibiting domains (Lee et al., 1992).
Calpastatin requires calcium to bind and inhibit calpains
(Cottin, Vidalenc, & Ducastaing, 1981; Imajoh & Suzuki,
1985). Calpastatin is also a substrate for the calpains and
can be degraded in the presence of calcium (Doumit &
Koohmaraie, 1999; Mellgren, Mericle, & Lane, 1986). Deg-
radation of calpastatin does not lead to complete loss of
inhibitory activity, and even after extensive proteolysis
some inhibitory activity remains (DeMartino, Wachendor-
fer, McGuire, & Croall, 1988; Nakamura, Inomata, Ima-
joh, Suzuki, & Kawashima, 1989).

For more detailed information regarding the calpain
system, the reader is referred to the extensive review by
Goll et al. (2003).

The evidence for the involvement of the calpain system
in postmortem proteolysis and tenderization comes from
a variety of studies (Fig. 3):

1. Incubation of myofibrils with calpains produces the
same proteolytic pattern as observed in postmortem
muscle (Geesink & Koohmaraie, 1999a; Huff-Lonergan
et al., 1996; Koohmaraie, Schollmeyer, & Dutson,
1986).

2. Infusion or injection of muscles with calcium accelerates
postmortem proteolysis and tenderization (Koohmaraie,
Babiker, Schroeder, Merkel, & Dutson, 1988; Koohma-
raie, Whipple, & Crouse, 1990; Wheeler, Crouse, &
Koohmaraie, 1992; Wheeler, Koohmaraie, & Crouse,
1991), whereas infusion or injection of muscles with cal-
pain inhibitors inhibits postmortem proteolysis and ten-
derization (Koohmaraie, 1990; Uytterhaegen, Claeys, &
Demeyer, 1994).
3. Differences in the rate of proteolysis and tenderization
between species can be explained by the variation in cal-
pastatin activity (Koohmaraie, Whipple, Kretchmar,
Crouse, & Mersmann, 1991a; Ouali & Talmant, 1990).

4. Differences in the rate of postmortem proteolysis and
tenderization between Bos taurus and Bos indicus cattle
can be explained by the variation in calpastatin activity
(Shackelford, Koohmaraie, Miller, Crouse, & Reagan,
1991; Whipple et al., 1990b).

5. The toughening effect of treatment with b-agonists can
be explained by an increase in calpastatin activity (Gars-
sen, Geesink, Hoving-Bolink, & Verplanke, 1995;
Koohmaraie, Shackelford, Muggli-Cockett, & Stone,
1991b).

6. The greatly reduced rate and extent of postmortem pro-
teolysis and tenderization in callipyge lamb can be
attributed to elevated levels of calpastatin in these ani-
mals (Geesink & Koohmaraie, 1999b; Koohmaraie
et al., 1995).

7. Overexpression of calpastatin in transgenic mice results
in a large reduction in postmortem proteolysis of muscle
proteins (Kent, Spencer, & Koohmaraie, 2004).

From the above-cited studies and others, it is clear that
the calpain system plays an important role in postmortem
proteolysis and tenderization. The remaining important
question is, which of the calpains is responsible for post-
mortem proteolysis and tenderization?

An important characteristic of the calpains is that they
autolyze once activated, ultimately leading to loss of activ-
ity (Dayton, 1982; Nagainis et al., 1983; Suzuki, Tsuji,
Kubota, et al., 1981). In bovine and ovine postmortem
muscle, the extractable activity of l-calpain declines, but
the activity of m-calpain is remarkably stable (Ducastaing,
Valin, Schollmeyer, & Cross, 1985; Geesink & Koohma-
raie, 1999b; Kretchmar, Hathaway, Epley, & Dayton,
1990; Veiseth, Shackelford, Wheeler, & Koohmaraie,
2001). This observation led Koohmaraie, Seideman,
Schollmeyer, Dutson, and Crouse (1987) to conclude that
l-calpain, but not m-calpain, is responsible for postmortem
tenderization.

Using Western blotting, it has been established that cal-
pain 3 does autolyze in postmortem muscle (Anderson
et al., 1998; Ilian, Bekhit, & Bickerstaffe, 2004; Parr
et al., 1999). In contrast with l-calpain and m-calpain, cal-
pain 3 is not inhibited by calpastatin (Sorimachi et al.,
1993). This observation excludes a major role of calpain
3 on postmortem proteolysis and tenderization, given the
great influence of calpastatin activity on these events. This
conclusion was further corroborated by results of a recent
study showing that postmortem proteolysis is not affected
in calpain 3 knockout mice (Geesink, Taylor, & Koohma-
raie, 2005).

The conclusion that l-calpain is responsible for post-
mortem proteolysis (Koohmaraie et al., 1987) was recently
confirmed using l-calpain knockout mice (Geesink, Kuc-
hay, Chishti, & Koohmaraie, 2006). The results of this
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study clearly showed that postmortem proteolysis was
largely inhibited in l-calpain knockout mice (Fig. 4). The
limited proteolysis that did occur could be attributed to
m-calpain, which is activated, as evidenced by autolysis,
to some extent in postmortem murine skeletal muscle, con-
trary to what occurs with m-calpain in the muscles of
meat-producing animals (Geesink et al., 2006; Kent et al.,
2004).

8. Where do we go from here?

As stated previously, tenderness is the most important
eating quality factor affecting consumer satisfaction. Thus,
biological and other factors that determine meat tenderness
have been the subject of intense research for almost a cen-
tury. We have learned that essentially three factors can
account for the great majority of the observed variation
in meat tenderness, and they are proteolysis, connective tis-
sue and sarcomere length (Rhee, Wheeler, Shackelford, &
Koohmaraie, 2004; Wheeler et al., 2000b). The relative
importance of proteolysis, connective tissue and sarcomere
length to tenderness is muscle dependent (e.g., while prote-
olysis is the major determinant of longissimus tenderness,
sarcomere length is the major determinant of psoas major

tenderness). There are a number of muscles for which all
three factors contribute to the tenderness of these muscles.



Fig. 4. Western blot analysis of nebulin (A), dystrophin (B), metavinculin and vinculin (C), desmin (D), and troponin-T (E) in whole muscle extracts of
two control and two l-calpain knockout mice at death (D0) and after 1 (D1) and 3 days’ (D3) storage at 4 �C (from Geesink et al., 2006).
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We, at the US Meat Animal Research Center, have tended
to focus our efforts on determining the basis for tenderness
of longissimus muscle, primarily due to its economic
significance.

Because of the importance of tenderness, significant
attempts have been made to ensure the tenderness of lon-

gissimus when presented to the consumer. Due to our
inability to predict longissimus tenderness until very
recently, one does not really know the degree of tenderness
until the meat is eaten. The level of uncertainty is simply
unacceptable and has led to efforts to develop methods to
predict tenderness. Processing conditions and the time
elapsed from exsanguination to meat on the plate varies
throughout the world based on tradition, custom and cul-
ture. To the extent possible, it is the responsibility of
researchers to enable industry to provide consumers with
palatable meat regardless of variation in practices in vari-
ous countries. As a result of decades of research, the meat
industry in the United States (and undoubtedly in other
countries) is well educated with respect to the importance
of postmortem storage (5–7 days for pork, 7–10 days for
lamb and 14 days for beef) to the ultimate tenderness. In
the United States, 36–48 h after exsanguination carcasses
are graded for quality (based on intramuscular fat or mar-
bling) and yield. Any tenderness prediction will more than
likely be done along with quality and yield grading. It is
well established that the variation in the rate and extent
of postmortem proteolysis and tenderization is the source
of the variation in meat tenderness at the consumer level.
Because of the variation in the rate of postmortem proteol-
ysis, any prediction method will have to be able to predict
the potential of a muscle to undergo postmortem proteoly-
sis from the time of prediction until 14 days of postmortem
storage. Because of the difficulty in developing an instru-
ment that can predict tenderization that occurs beyond
36–48 h (the time at which tenderness will be predicted),
there is no accurate method of predicting tenderness. It is
highly likely that we can develop methods that can predict
meat tenderness at the time of measurement. Therefore, if
we could accelerate postmortem proteolysis so that much
of it has happened by the time of tenderness prediction
(36–48 h post exsanguination in the United States), the
likelihood of developing a tenderness prediction method
would dramatically increase.

We hope that the data presented in this review paper
and in the original papers that are the basis for this review
paper will once and for all convince the researchers in this
field that postmortem tenderization is due to l-calpain-
induced degradation of key myofibrillar proteins. Accep-
tance of such a conclusion, which is rooted in sound
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research, will enable the researchers to focus their efforts to
elucidate the regulation of l-calpain in postmortem muscle.
If application of knowledge of l-calpain regulation results
in acceleration of l-calpain activity, it should facilitate the
development of accurate methods of predicting meat ten-
derness and ultimately in methods to ensure all meat is
acceptably tender.

9. Conclusions

Data generated by numerous projects in our laboratory,
as well as in laboratories around the world, have convinced
us that l-calpain-induced degradation of key myofibrillar
proteins is the cause of postmortem proteolysis and, hence,
l-calpain activity is the primary source of variation in
tenderness of muscles for which proteolysis is the major
determinant of tenderness. Discovering the mechanisms
of l-calpain activity regulation in early postmortem muscle
and, more importantly, the development of methods to
accelerate l-calpain activity within the constraints of
highly regulated production practices should have a dra-
matic effect on the ability of the meat industry to produce
a product that is consistently tender.
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Tomé, F. M. S., et al. (1998). Characterization of monoclonal
antibodies to calpain 3 and protein expression in muscle from patients
with limb-girdle muscular dystrophy type 2A. American Journal of

Pathology, 153, 1169–1179.
Belk, K. E., Scanga, J. A., Wyle, A. M., Wulf, D. M., Tatum, J. D.,

Reagan, J. O., et al. (2000). The use of video image analysis and
instrumentation to predict beef palatability. In Proceedings of the 53rd

annual reciprocal meat conference, Ohio, USA (pp. 10–15).
Bickerstaffe, R., Bekhit, A. E. D., Robertson, L. J., Roberts, N., &

Geesink, G. H. (2001). Impact of introducing specifications on the
tenderness of retail meat. Meat Science, 59, 303–315.

Boleman, S. J., Boleman, S. L., Miller, R. K., Taylor, J. F., Cross, H. R.,
Wheeler, T. L., et al. (1997). Consumer evaluation of beef of known
categories of tenderness. Journal of Animal Science, 75, 1521–
1524.

Bouton, P. E., Harris, P. V., Shorthose, W. R., & Baxter, R. I. (1973). A
comparison of the effects of aging, conditioning and skeletal restraint
on the tenderness of mutton. Journal of Food Science, 38, 932–937.

Brown, N., & Crawford, C. (1993). Structural modifications associated
with the change in Ca2+ sensitivity on activation of m-calpain. FEBS

Letters, 322, 65–68.
Byrne, C. E., Downey, G., Troy, D., & Buckley, D. (1998). Non-

destructive prediction of selected quality attributes of beef by near-
infrared reflectance spectroscopy. Meat Science, 49, 399–409.

Cottin, P., Vidalenc, P. L., & Ducastaing, A. (1981). Ca2+-dependent
association between a Ca2+-activated neutral proteinase (CaANP) and
its specific inhibitor. FEBS Letters, 136, 221–224.

Davey, C. L., & Dickson, D. R. (1970). Studies in meat tenderness 8.
Ultrastructural changes in meat during aging. Journal of Food Science,

35, 56–60.
Davey, C. L., & Gilbert, K. V. (1969). Studies of meat tenderness. 7

Changes in the fine structure of meat during aging. Journal of Food

Science, 34, 69–74.
Dayton, W. R. (1982). Comparison of low- and high-calcium-requiring
forms of the calcium-activated protease with their autolytic breakdown
products. Biochimica et Biophysica Acta, 709, 166–172.

Dayton, W. R., Goll, D. E., Zeece, M. G., Robson, R. M., & Reville, W.
(1976). A Ca2+-activated protease possibly involved in myofibrillar
protein turnover. Purification from porcine muscle. Biochemistry, 15,
2150–2158.

Dayton, W. R., Reville, W. J., Goll, D. E., & Stromer, M. H. (1976). A
Ca2+-activated protease possibly involved in myofibrillar protein
turnover. Partial characterization of the purified enzyme. Biochemistry,

15, 2159–2167.
Dayton, W. R., Schollmeyer, J. V., Lepley, R. A., & Cortés, L. R. (1981).

A calcium-activated protease possibly involved in myofibrillar protein
turnover. Isolation of a low-calcium-requiring form of the protease.
Biochimica et Biophysica Acta, 659, 48–61.

DeMartino, G. N., Wachendorfer, R., McGuire, M., & Croall, D. E.
(1988). Proteolysis of the protein inhibitor of calcium-dependent
proteases produces lower molecular weight fragments that retain
inhibitory activity. Archives of Biochemistry and Biophysics, 262,
189–198.

Doumit, M. E., & Koohmaraie, M. (1999). Immunoblot analysis of
calpastatin degradation: evidence for cleavage by calpain in post-
mortem muscle. Journal of Animal Science, 77, 1467–1473.

Ducastaing, A., Valin, C., Schollmeyer & Cross, R. (1985). Effects of
electrical stimulation on post-mortem changes in the activities of two
Ca dependent neutral proteinases and their inhibitor in beef muscle.
Meat Science, 15, 193–202.

Dutson, T. R., Pearson, A. M., & Merkel, R. A. (1974). Ultrastructural
postmortem changes in normal and low quality porcine muscle fibers.
Journal of Food Science, 39, 32–37.

Emori, Y., Kawasaki, H., Imajoh, S., Kawashima, S., & Suzuki, K.
(1986). Isolation and sequence analysis of cDNA clones for the small
subunit of rabbit calcium-dependent protease. Journal of Biological

Chemistry, 261, 9472–9476.
Feldkamp, T. J., Schroeder, T. C., & Lusk, J. L. (2005). Determining

consumer valuation of differentiated beef steak quality attributes.
Journal of Muscle Foods, 16, 1–15.

Garssen, G. J., Geesink, G. H., Hoving-Bolink, A. H., & Verplanke, J. C.
(1995). Effects of dietary clenbuterol and salbutamol on meat quality in
veal calves. Meat Science, 40, 337–350.

Geesink, G. H., & Koohmaraie, M. (1999a). Effect of calpastatin on
degradation of myofibrillar proteins by l-calpain under postmortem
conditions. Journal of Animal Science, 77, 2685–2692.

Geesink, G. H., & Koohmaraie, M. (1999b). Postmortem proteolysis and
calpain/calpastatin activity in callipyge and normal lamb biceps
femoris during extended postmortem storage. Journal of Animal

Science, 77, 1490–1501.
Geesink, G. H., Kuchay, S., Chishti, A. H., & Koohmaraie, M. (2006).

l-Calpain is essential for postmortem proteolysis of muscle proteins.
Journal of Animal Science, in press.

Geesink, G. H., Taylor, R. G., & Koohmaraie, M. (2005). Calpain 3/p94
is not involved in postmortem proteolysis. Journal of Animal Science,

83, 1646–1652.
George, M. H., Tatum, J. D., Belk, K. E., & Smith, G. C. (1999). An audit

of retail beef loin steak tenderness conducted in eight US cities. Journal

of Animal Science, 77, 1735–1741.
Goll, D. E., Otsuka, Y., Nagainis, P. A., Shannon, J. D., Sathe, S. K., &

Muguruma, M. (1983). Role of muscle proteinases in maintenance of
muscle integrity and mass. Journal of Food Biochemistry, 7, 137–177.

Goll, D. E., Thompson, V. F., Li, H., Wei, W., & Cong, J. (2003). The
calpain system. Physiological Reviews, 83, 731–801.

Herring, H. K., Cassens, R. G., Suess, G. G., Brungardt, V. H., & Briskey,
E. J. (1967). Tenderness and associated characteristics of stretched and
contracted bovine muscles. Journal of Food Science, 32, 317–323.

Ho, C. Y., Stromer, M. H., Rouse, G., & Robson, R. M. (1996). Effect of
electrical stimulation on postmortem titin, nebulin, desmin, troponin-T
degradation and ultrastructural changes in bovine longissimus muscle.
Journal of Animal Science, 74, 1563–1575.



42 M. Koohmaraie, G.H. Geesink / Meat Science 74 (2006) 34–43
Hoagland, R., McBryde, C. N., & Powick, W. C. (1917). Changes in fresh
beef during cold storage above freezing. United States Department of

Agriculture Bulletin, 433, 1–100.
Huff-Lonergan, E., Mitsuhashi, M., Beekman, D. D., Parrish, F. C., Jr.,

Olson, D. G., & Robson, R. M. (1996). Proteolysis of specific muscle
structural proteins by l-calpain at low pH and temperature is similar
to degradation in postmortem bovine muscle. Journal of Animal

Science, 74, 993–1008.
Huffman, K. L., Miller, M. F., Hoover, L. C., Wu, C. K., Brittin, H. C., &

Ramsey, C. B. (1996). Effect of beef tenderness on consumer
satisfaction with steaks consumed in the home and restaurant. Journal

of Animal Science, 74, 91–97.
Ilian, M. A., Bekhit, A. E. D., & Bickerstaffe, R. (2004). The relationship

between meat tenderization, myofibril fragmentation and autolysis
of calpain 3 during post-mortem aging. Meat Science, 66, 387–
397.

Imajoh, S., & Suzuki, K. (1985). Reversible interaction between Ca2+-
activated neutral protease (CANP) and its endogenous inhibitor.
FEBS Letters, 187, 47–50.

Inomata, M., Kasai, Y., Nakamura, M., & Kawashima, S. (1988).
Activation mechanism of calcium activated neutral protease. Journal

of Biological Chemistry, 263, 19783–19787.
Kent, M. P., Spencer, M. J., & Koohmaraie, M. (2004). Postmortem

proteolysis is reduced in transgenic mice overexpressing calpastatin.
Journal of Animal Science, 82, 794–801.

Koohmaraie, M. (1988). The role of endogenous proteases in meat
tenderness. In Proceedings of 41st annual reciprocal meat conference,
Wyoming, USA (pp. 89–100).

Koohmaraie, M. (1990). Inhibition of postmortem tenderization in ovine
carcasses through infusion of zinc. Journal of Animal Science, 68,
1476–1483.

Koohmaraie, M. (1992). Ovine skeletal muscle multicatalytic proteinase
complex (proteasome): purification, characterization, and comparison
of its effect on myofibrils with l-calpain. Journal of Animal Science, 70,
3697–3708.

Koohmaraie, M., Babiker, A. S., Schroeder, A. L., Merkel, R. A., &
Dutson, T. R. (1988). Acceleration of postmortem tenderization in
ovine carcasses through activation of Ca2+-dependent proteases.
Journal of Food Science, 53, 1638–1641.

Koohmaraie, M., Doumit, M. E., & Wheeler, T. L. (1996). Meat
toughening does not occur when rigor shortening is prevented. Journal

of Animal Science, 74, 2935–2942.
Koohmaraie, M., Schollmeyer, J. E., & Dutson, T. R. (1986). Effect of

low-calcium-requiring calcium activated factor on myofibrils under
varying pH and temperature conditions. Journal of Food Science, 51,
28–32.

Koohmaraie, M., Seideman, S. C., Schollmeyer, J. E., Dutson, T. R., &
Crouse, J. D. (1987). Effects of post-mortem storage on Ca++-
dependent proteases, their inhibitor and myofibril fragmentation.
Meat Science, 19, 187–196.

Koohmaraie, M., Shackelford, S. D., Muggli-Cockett, N. E., & Stone, R.
T. (1991b). Effect of the b-adrenergic agonist L644,969 on muscle
growth, endogenous proteinase activities, and postmortem proteolysis
in wether lambs. Journal of Animal Science, 69, 4823–4835.

Koohmaraie, M., Shackelford, S. D., Wheeler, T. L., Lonergan, S. N., &
Doumit, M. E. (1995). A muscle hypertrophy condition in lamb
(callipyge): characterization of effects on muscle growth and meat
quality traits. Journal of Animal Science, 73, 3596–3607.

Koohmaraie, M., Whipple, G., & Crouse, J. D. (1990). Acceleration of
postmortem tenderization in lamb and Brahman-cross beef carcasses
through infusion of calcium chloride. Journal of Animal Science, 68,
1278–1283.

Koohmaraie, M., Whipple, G., Kretchmar, D. H., Crouse, J. D., &
Mersmann, H. J. (1991a). Postmortem proteolysis in longissimus
muscle from beef, lamb and pork carcasses. Journal of Animal Science,

69, 617–624.
Kretchmar, D. H., Hathaway, M. R., Epley, R. J., & Dayton, W. R.

(1990). Alterations in postmortem degradation of myofibrillar proteins
in lamb fed a b-adrenergic agonist. Journal of Animal Science, 68,
1760–1772.

Lee, W. J., Ma, H., Takano, E., Yang, H. Q., Hatanaka, M., & Maki, M.
(1992). Molecular diversity in amino-terminal domains of human
calpastatin by exon skipping. Journal of Biological Chemistry, 267,
8437–8442.

Li, J., & Shatadal, P. (2001). Classification of tough and tender beef by
image texture analysis. Meat Science, 57, 341–346.

Locker, R. H. (1960). Degree of muscle contraction as a factor in
tenderness of beef. Food Research, 25, 304–307.

Lusk, J. L., Fox, J. A., Schroeder, T. C., Mintert, J., & Koohmaraie, M.
(2001). In-store valuation of steak tenderness. American Journal of

Agricultural Economics, 83, 539–550.
Maki, M., Takano, E., Osawa, T., Ooi, T., Murachi, T., & Hatanaka, M.

(1988). Analysis of structure–function relationship of pig calpastatin
by expression of mutated cDNAs in Escherichia coli. Journal of

Biological Chemistry, 263, 10254–10261.
Marsh, B. B., & Leet, N. G. (1966). Studies in meat tenderness. III. The

effects of cold shortening on tenderness. Journal of Food Science, 31,
450–459.

Mellgren, R. L., Mericle, M. T., & Lane, R. D. (1986). Proteolysis of the
calcium-dependent protease inhibitor by myocardial calcium-depen-
dent protease. Archives of Biochemistry and Biophysics, 246, 233–239.

Miller, M. F., Carr, M. F., Ramsey, C. B., Crockett, K. L., & Hoover, L.
C. (2001). Consumer thresholds for establishing the value of beef
tenderness. Journal of Animal Science, 79, 3062–3068.

Morgan, J. B., Savell, J. W., Hale, D. S., Miller, R. K., Griffin, D. B.,
Cross, H. R., et al. (1991). National beef tenderness survey. Journal of

Animal Science, 69, 3274–3283.
Nagainis, P. A., Sathe, S. K., Goll, D. E., & Edmunds, T. (1983).

Autolysis of high-Ca2+ and low Ca2+-forms of the Ca2+-dependent
proteinase from bovine skeletal muscle. Federation Proceedings, 42,
1780.

Nakamura, M., Inomata, M., Imajoh, S., Suzuki, K., & Kawashima, S.
(1989). Fragmentation of an endogenous inhibitor upon complex
formation with high- and low-Ca2+-requiring forms of calcium-
activated neutral proteases. Biochemistry, 28, 449–455.

Olson, D. G., Parrish, F. C., Dayton, W. R., & Goll, D. E. (1977). Effect
of postmortem storage and calcium activated factor on the myofibrillar
proteins of bovine skeletal muscle. Journal of Food Science, 42,
117–124.

Ouali, A., & Talmant, A. (1990). Calpains and calpastatin distribution in
bovine, porcine and ovine skeletal muscles. Meat Science, 28, 331–348.

Park, B., Chen, Y. R., Hruschka, W. R., Shackelford, S. D., &
Koohmaraie, M. (1998). Near-infrared reflectance analysis for pre-
dicting beef longissimus tenderness. Journal of Animal Science, 76,
2115–2120.

Parr, T., Sensky, P. L., Scothern, G. P., Bardsley, R. G., Buttery, P. J.,
Wood, J. D., et al. (1999). Relationship between skeletal muscle-
specific calpain, p94/calpain 3. Journal of Animal Science, 77, 661–668.

Polkinghorne, R., Watson, R., Porter, M., Gee, A., Scott, J., &
Thompson, J. (1999). The use of consumer scores to set grade
standards. In Proceedings of the 45th international conference of meat

science and technology, Yokohama, Japan (pp. 14–15).
Rhee, M. S., Wheeler, T. L., Shackelford, S. D., & Koohmaraie, M.

(2004). Variation in palatability and biochemical traits within and
among eleven beef muscles. Journal of Animal Science, 82, 534–550.

Robson, R. M., Huff-Lonergan, E., Parrish, F. C., Ho, C. Y., Stromer, M.
H., Huiatt, T. W., et al. (1997). Postmortem changes in the myofibrillar
and cytoskeletal proteins in muscle. In Proceedings of the 50th annual

reciprocal meat conference, Iowa, USA (pp. 43–52).
Savell, J. W., Shackelford, S. D. (1992). Significance of tenderness to the

meat industry. In Proceedings of 45th annual reciprocal meat confer-

ence, Colorado, USA (pp. 43–46).
Shackelford, S. D., Koohmaraie, M., Miller, M. F., Crouse, J. D., &

Reagan, J. O. (1991). An evaluation of tenderness of the longissimus
muscle of Angus by Hereford versus Brahman crossbred heifers.
Journal of Animal Science, 69, 171–177.



M. Koohmaraie, G.H. Geesink / Meat Science 74 (2006) 34–43 43
Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (2004). Develop-
ment of optimal protocol for visible and near-infrared reflectance
spectroscopic evaluation of meat quality. Meat Sci., 68, 371–381.

Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (2005). On-line
classification of US select beef carcasses for longissimus tenderness
using visible and near-infrared reflectance spectroscopy. Meat Sci., 69,
409–415.

Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (1999). Tenderness
classification of beef: II. Design and analysis of a system to measure
beef longissimus shear force under commercial processing conditions.
Journal of Animal Science, 77, 1474–1481.

Shackelford, S. D., Wheeler, T. L., Meade, M. K., Reagan, J. O., Byrnes,
B. L., & Koohmaraie, M. (2001). Consumer impressions of Tender
Select beef. Journal of Animal Science, 79, 2605–2614.

Smith, G. C., Savell, J. W., Dolezal, H. G., Field, T. G., Gill, D. R.,
Griffin, D. B., et al. (1995). Improving the quality, consistency,
competetiveness and marketshare of beef: the final report of the second
blueprint for total quality management in the fed-beef (slaughter steer/
heifer) industry. National Beef Quality Audit–1995.

Sorimachi, H., Ishiura, S., & Suzuki, K. (1989). Molecular cloning of a
novel mammalian calcium dependent protease distinct from both m-
and l-types. Journal of Biological Chemistry, 264, 20106–20111.

Sorimachi, H., Kinbara, K., Kimura, S., Takahashi, M., Ishiura, S.,
Sasagawa, N., et al. (1995). Muscle-specific calpain, p94, responsible
for limb girdle muscular dystrophy type 2A, associates with connectin
through IS2, a p94-specific sequence. Journal of Biological Chemistry,

270, 31158–31162.
Sorimachi, H., Toyama-Sorimachi, N., Saido, T. C., Kawasaki, H.,

Sugita, H., Miyasaka, M., et al. (1993). Muscle-specific calpain, p94, is
degraded by autolysis immediately after translation, resulting in
disappearance from muscle. Journal of Biological Chemistry, 268,
10593–10605.

Strandine, E. J., Koonz, C. H., & Ramsbottom, J. M. (1949). A study of
variations in muscles of beef and chicken. Journal of Animal Science, 8,
483–494.

Suzuki, K., Tsuji, S., Ishiura, S., Kimura, Y., Kubota, S., & Imahori, K.
(1981). Autolysis of calcium-activated neutral protease of chicken
skeletal muscle. Journal of Biochemistry, 90, 1787–1793.

Suzuki, K., Tsuji, S., Kubota, S., Kimura, Y., & Imahori, K. (1981).
Limited autolysis of Ca2+-activated neutral protease (CANP) changes
its sensitivity to Ca2+ ions. Journal of Biochemistry, 90, 275–278.

Taylor, R. G., & Koohmaraie, M. (1998). Effects of postmortem storage
on the ultrastructure of the endomysium and myofibrils in normal and
callipyge longissimus. Journal of Animal Science, 76, 2811–2817.

Taylor, R. G., Geesink, G. H., Thompson, V. F., Koohmaraie, M., &
Goll, D. E. (1995a). Is Z-disk degradation responsible for postmortem
tenderization? Journal of Animal Science, 21, 1351–1367.

Taylor, R. G., Tassy, C., Briand, M., Robert, N., Briand, Y., & Ouali, A.
(1995b). Proteolytic activity of proteasome on myofibrillar structures.
Molecular Biology Reports, 21, 71–73.

Thompson, J. R., Polkinghorne, R., Watson, R., Gee, A., & Murrison, B.
(1999). A cut based grading scheme to predict eating quality by
cooking method. In Proceedings of the 45th international conference of

meat science and technology, Yokohama, Japan (pp. 20–21).
Uytterhaegen, L., Claeys, E., & Demeyer, D. (1994). Effects of exogenous

protease effectors on beef tenderness and myofibrillar degradation and
solubility. Journal of Animal Science, 72, 1209–1223.
Veiseth, E., Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M.
(2001). Effect of post-mortem storage on l-calpain and m-calpain
in ovine skeletal muscle. Journal of Animal Science, 70,
3035–3043.

Veiseth, E., Shackelford, S. D., Wheeler, T. L., & Koohmaraie, M. (2004).
Factors regulating lamb longissimus tenderness are affected by age at
slaughter. Meat Science, 68, 635–640.

Vote, D. J., Belk, K. E., Tatum, J. D., Scanga, J. A., & Smith, G. C.
(2003). Online prediction of beef tenderness using a computer vision
system equipped with a BeefCam module. Journal of Animal Science,

81, 457–465.
Wheeler, T. L., Crouse, J. D., & Koohmaraie, M. (1992). The effect of

postmortem time of injection and freezing on the effectiveness of
calcium chloride for improving beef tenderness. Journal of Animal

Science, 70, 3451–3457.
Wheeler, T. L., Cundiff, L. V., & Koch, R. M. (1994). Effect of marbling

degree on beef palatability in Bos taurus and Bos indicus cattle.
Journal of Animal Science, 72, 3145–3151.

Wheeler, T. L., & Koohmaraie, M. (1994). Prerigor and postrigor changes
in tenderness of ovine longissimus muscle. Journal of Animal Science,

72, 1232–1238.
Wheeler, T. L., & Koohmaraie, M. (1999). The extent of proteolysis is

independent of sarcomere length in lamb longissimus and psoas major.
Journal of Animal Science, 77, 2444–2451.

Wheeler, T. L., Koohmaraie, M., & Crouse, J. D. (1991). Effects of
calcium chloride injection and hot boning on the tenderness of round
muscles. Journal of Animal Science, 78, 958–965.

Wheeler, T. L., Shackelford, S. D., & Koohmaraie, M. (1999). MARC
classification system: objective evaluation of beef tenderness and
cutability. Bulletin. Clay Center, NE: Roman L. Hruska US Meat
Animal Research Center, Agricultural Research Service, US Depart-
ment of Agriculture.

Wheeler, T. L., Shackelford, S. D., & Koohmaraie, M. (2000a).
Relationship of beef longissimus tenderness classes to tenderness of
gluteus medius, semimembranosus, and biceps femoris. Journal of

Animal Science, 78, 2856–2861.
Wheeler, T. L., Shackelford, S. D., & Koohmaraie, M. (2000b). Variation

in proteolysis, sarcomere length, collagen content, and tenderness
among major pork muscles. Journal of Animal Science, 78, 958–
965.

Wheeler, T. L., Vote, D., Leheska, J. M., Shackelford, S. D., Belk, K. E.,
Wulf, D. M., et al. (2002). The efficacy of three objective systems for
identifying beef cuts that can be guaranteed tender. Journal of Animal

Science, 80, 3315–3327.
Whipple, G., Koohmaraie, M., Dikeman, M. E., & Crouse, J. D. (1990a).

Predicting beef-longissimus tenderness from various biochemical and
histological muscle traits. Journal of Animal Science, 68, 4193–
4199.

Whipple, G., Koohmaraie, M., Dikeman, M. E., Crouse, J. D., Hunt, M.
C., & Klemm, R. D. (1990b). Evaluation of attributes that affect
longissimus muscle tenderness in Bos taurus and Bos indicus cattle.
Journal of Animal Science, 68, 2716–2728.

Wulf, D. M., & Page, J. K. (2000). Using measurements of muscle color,
pH, and electrical impedance to augment the current USDA beef
quality grading standard and improve the accuracy and precision of
sorting carcasses into palatability groups. Journal of Animal Science,

78, 2595–2607.


	Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system
	Introduction
	The importance and value of meat tenderness
	Growth of branded products and guaranteed tenderness products
	The effect of postmortem storage on tenderness
	The effect of postmortem storage on muscle ultrastructure
	What characteristics should a protease have to be considered as a candidate for causing postmortem tenderization?
	 mu -Calpain is largely, if not solely, responsible for postmortem tenderization
	Where do we go from here?
	Conclusions
	References


